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FLOATING POINT ERROR BOUND IN THE PRIME FACTOR FFT*

David C. Munson, Jr.
Coordinated Science Laboratory
and Department of Electrical Engineering
University of Illinois
Urbana, IL 61801

ABSTRACT

The prime factor FFT (PF FFT), developed by
Kolba and Parks. makea use of receat computational
complexity results by Winograd to compute the DFT
with a fewer number of multiplications than that
rvequired by the FFT. Patterson and McClellan have
derived an expression for the MSE in the PF FFT
assuming finite precision fixed point arithmetic.
In this paper we derive a bound on the MSE in the
PF FFT assuming floating point arithmetic. In the
course of the derivation an expression for the
actual MSE is also presented, but is seen to be too
complicated to be of practical use.

I. INTRODUCTION

Fairly recently a new class of algorithms has
emerged for computing the DFT with a fewer number
of multiplications than that required by the FFT.
The first of these algorithms was developed by
Winograd {1,2] and makes use of his formulation for
performing convolution with the minimum number of
multiplications [3]. This algorithm has been
termed the Winograd Fourier transform algorithm

WFTAY [4]. An unnested version of the WFTA has
een proposed by Kolba and Parks and termed the
prime factor FFT (PF FFT) [5].

[t is of interest to investigate the effects
of finite register length in these new algorithms.
Patterson and McClellan have derived expressions
for the average MSE in both the WFTA and PF FFT,
assuming a statistical error model and fixed point
arithmetic [6]. In this paper we restrict attention
to the PF FFT and derive an expression for the MSE
assuming floating point arithmetic. The resulting
expression is quite cumbersome, but a bound on the
MSE is also derived which is relatively easy to
compute.

II. PRELIMINARIES

A. PP FFT Algorithm
A one dimensional Winograd type DFT aigorithm

can be represented in matrix notation as
Y = CDA y (&)
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where y is the input vector and Y is the DFT out-
put. The rectangular matrices A and C correspond
to the input and output stages of the algorithm and
contain only O and +1 entries. The matrix D is
diagonal and contains the only multiplications in
the algorithm. As an example, the 3 point DFT may
be written as (5]
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In this particular example A and C are square, but
this i{s not generally the case,

An M-dimensional PF FFT is a cascade of M mod-
ules, each consisting of several of the computa-
tions given by (1). The PF FFT may be written as

X = (CyDAyY---2C DA, Ix M

where "x" denotes a Kronecker prcduct, and x and X
are the DFT input and output respectively. [t is
assumed that the dimension of cmDm.\m is Nm and that

M
the dimension of x is N with N = 7 N/ and the Ny
m=l
relatively prime. Thus to compute the DFT accord-
ing to (3), only Nm point DFT's are required.

Fig. 1 gives a pictorial representation of (3)
for M=2 modules. Each plane in the figure is a
computation as given by (l). To date, algorithms
have been published for only four mutually prime
sequence lengths N_. Hence, M=4 is the maximum
number of modules.

B. Characterization of Floating Point Errors
We shall be concerned with binary wachines

using floating point arithmetic with a double
precision accumulator. Thus, each machine number
may be expressed as (sign)-n-zb where the mantissa
‘a' is a fraction between % and 1 and the exponent
'b' is an integer. It shall be assumed that B8

bits are used for the mantissa and that enough bits
are alloted to the exponent to prevent overflow.

If we let €1(:) denote the machine number re-
sulting from a real floating point operation., then
it is well known that [?] for wrost machines
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EL(xty) = (x4y)(148)) "
)
£1(x-y) = (x-y)(1H,)

"where the errors §, and 3, satisfy -2’8/2<5152'B/2

for rounding and -2'B<6150 for truncation.
The errors 61 and 62 are typically modelled as

random variables, independent of x and y and uni-
formly distributed on their range {7]. The bound
to be derived in the next section will require
knowledge of only the mean squared values of the
°i.’ which can be easily computed. For example,

assuming rounding we have for real addition and
multiplication 2 2-23
Elsi} =53

For the remainder of this paper we shall assume
rounding arithmetic.

The PF FFT is composed of many short one di-
mensional DFT's, each implemented as in (1). 1In
the next section we shall require an expression for
the error vector at the output of a single one
dimensional DFT. Let y and Y be the respective
input and desired output of a single N_ point DFT.
Then R 1 »

Y= CPAY +iCDAY (5)

where 1R and 11 are the real and imaginary parts of
y respectively. Denote the actual machine output
by ¥. Then the error vector at the DFT output,
v(m) = ¥ - Y, may be written as

vmy= @yt + Ry’ + (6 + 15m)x]] (6)

where Q(m) is an error matrix associated with a
single N_ point DFT of a real input array. The
errvor matrix ng) may be obtained as follows. The
actual output Y, resulting frow & real input array,
is computed by substituting f1(-) for each multi-
plication and addition occuring in (1). The ith
substitution is made with an error source § 1 where

it {s assumed the {613 are uncorrelated. If desired,
dkk(1+°i) may be substituted for the diagonal ele-
ments dkk in D, so that the error due to storage of

the multiplier coafficients is also accounted for.
All second order effects inyolving terms of the
form 6151 are dropped from Y. The output Y is then

subtracted, giving y(m) to first order. Each ele-
ment of Y(m) is & linear combination of the y:‘

with coefficients (the entries in Q(m)) given by
linear combinations of the 61‘ The matrix Q(m) 1is

the error matrix &ssociated with an Nm point DFT of

a purely imaginary array. Q(m) has the ssme form
as Q(m), however the elements in these two matrices
are assumed to be uncorrelated since they arise
from different multiplications. The last term in

t6) is due to adding the DFT o!‘.za to the DFT of

)y_‘L in /5). Both G(m) and (-:(m) are diagonal ma-

trices with each element having variance 272812,
A fact which will be neglected is that the first

element {n both G(m) and E(n) is actually zero.
This follows since the component of Y due to ¥

is purely real and the component of Yl due to sz

is purely imaginary so that no error occurs in
adding these two components.

11X, FLOATING POINT ERROR BOUND

It {s desired to bound the average MSE (over
all outputs) st the PP PPT output. This error re-
sults from computational errors which originate
within each module in (3) and then propagate to the
output. It is expedient to consider the effects of
the errors from each module separately.

It is somewhat difficult to picture the PF FFT
for 2. However, each porcion of the computation,
from the mth module to the output, may still be
represented in a wanner similar to Fig. 1. Fig. 2
illustrates a particular stage S ‘(n). which is the

transformation from a portion of the mth module
input to the PF FFT output. The PF FFT contains
Nl'“Nm-l of these stages in parasllel. Hence, the

index £ runs from 1 to N,--N__, and each stage
computes only part of the PF FFT output.
Congider the kth Nm point DFT in stage S l(")'

lat the error at the jth output of this DFT, due to
errors originating within this DFT, be defined as

j-l""'Nm
: k-l,....(NMI---NM)
ik (m)
t-l,...,(Nl-nNm_l)
wm=l,...,M .
Then let
"1""'(Nm+1°"“t4)
N s-l.‘..,Nm
e"(m)

AL, (NN )

ol,...,M
be the rth output of tl"\e sth (Nnﬂ-l“'NM) point DFT
in S‘ (m) due to the ‘jk(m)'
We shall Eirst compute
1 2 2
ﬁizts { l“(ﬂ)|
rts

which is the average MSE at the PF FFT output due
to errors originating within the mth module. For
fixed L and s it follows from Parseval that

‘ 2 -m LY z 2
f E||"(n)| (Nmﬂ M) f Eh“(u)l -

Therefore
1 4 2 . 2
3 5 LI Ele ] (Nopy " Ny (m) )]
rs
where
od(m) & % £LT E]cfr(nﬂz %)
trs
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is the average MSE at the output of the mth module
due to errvors originating within that module.

An expression for az(m) is now required in
terms of the algorithm parameters. To investigate
the errors occuring within the mth module, (3) is
rewrittea using a standard Kronecker product iden-
tity giving

8= [(CMDMAM)“"Y(Cm+l m+l m+1)x[ A "YII]'
[Inx...x[m+lw(cmDmAm)xIm_l%...xIl]. (9)
{IM .xI Y(C l - l - 1)x Y(CIDIAI)]§.

Similarly X may be written as a product of M ma-
trices times x where the ith matrix represents

the transformation performed by the ith module.

In (9) we have broken the computation around the
mth module. The output x(m) of this module may be
written as

x(m) = .VIm+1V(CmDmAm)¥Im_ Y...Ylllg(m-l)

(IMY.. 1

(10)
where x(m-1) is the input to the mth module given
by x(m-1)=(Iy¥. .. XL X(Co (D (A 1 )X...X(C;D\A )]x.
It is apparent from (6) and (l0) that the error
€(m) in x(m) may be expressed as

&(m) ~ P(m)x"(m-1) + JB(Mx (m-1) + F(m)x (m)

+ jF(@x’m (11)
where
P )La N X ¢ ss
(m R PP R Q(m) ¥ | SPL PR 1 ] (12
®rm) a [[“*...¥[m+l ©G(m) v Im_lw...xlxlss.

ilere (-fss indicates that each time Q(m) or G(m) is
repeated in the Kronecker product, its elements are
superscripted relating them tc their respective
CmDmAm implementation. Without this additional

superscript. the §, arising from one implementation
of Cm[)_"A’n would be assumed to be identical to those

arising rfrom another implementation. However,
since the inputs to the various implementations are
different., we shall in fact assume these errors to
be uncorrelated.

From the definition of €(m), the quantity
szfm). given by (8) may be written as

32(m) - é E 6 (m) € (m)}

where "#'" denotes complex conjugate transpose.
Substituting from (11) gives
2 %
Fim 2 2B e ) gt e 1)
I - = I
+x T(m-1)P (m)P(m)x (m-1) (13)

+ ER*(m)F*(m)F{m)ER(m)

i - = 1§ \
~x  mF omFmIx ‘m);

Accession For
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nTIC TR

may be further simplified since
EL5R*(m)F*(m)F(m)5R(m)}-E{ER*(m)E{F*(m)F(n)}ER(m)}

-2B
-E[EK*(m)z12 r §R(m)}

-2B
i R* R
'ZTE_ E{x" (m)x (m)} .
The second equality follows because F(m) is a diag-
onal matrix with each element having variance

28,12, The last term in (13) is equal to a sim-
ilar expression so that the sum of the last two
terms is given by

-28 * *
Z— el M@t} + e @x' @) -

-2,
3 Elx (m)x(m}.

az(m) given by (13) can now be rewritten as

oX(m) = % el x* @-1)p @) Pm)x" (m-1)

T (e 1B () B(a)x (m-1)

-28 (18)
I mxm] .

+x

So far, only errors originating within the mth
module have been considered. We shall now formu-
late an expression for the total average MSE at the
PF FFT output due to all modules. [t may be seen
from (11) and (12) that the error vector at the
output of the mth module depends on Q(m) and G(m).
However, Q(m) and G(m) are uncorrelated with Q(i)
and G(i) for i ¥ m and hence €(m) is uncorrelated
with €(i). The total average MSE at the PF FFT
output is therefore the sum of the average MSE's
due to each module. From (7) the total average

MSE 62 is given by

P l:zszg|e w) |2
N s
mirvs
M-1 2 M 2
=L ¢ (m) =m Ni] + o M), (15)
m=1 {®mtl

We may then substitute (14) for az(m), however the
first two terms in this quantity will be difficult
to compute. As an alternative we shall now derive

a bound on cz(m) which i3 much easier to compute
than az(m) itself.

The first term in (14) may be bounded as
follows. Letting T & P'(m)e(m) gives

(m-l)P (m)P(m)x (m-1) = T xk(m-l) ) x%(n-l)

R R
ika-mkf‘:(m-nl

veyee 2R e
where all cross terms are zero and have been omit- Uranmsyeoed o I ! X (m l)l‘tkil
ted 3ince Pim) P/m), Fim), and F(m) are all uncor-} JustiZicat ion _fea \ R
related ard zero-mean. [he last two terms in (13) o == 'i*;(m‘l‘l
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where the second inequality followsssince T is non-
negative definite, and the 'ast inequality follows
by Cauchy-Schwartz. The second term in (14) can be
bounded in an identical fashion giving

s § el : bR im-1)|2 IZel, (|2

+ Z | xi(m-l)[2 E T E| Bln(m)‘z
n

a -2B

5% " (@)x(m . (16)

+

Consider T L E IPL (m)l2 in (16). It is ap-
n
parent from (12) that the matrix P(m) contains the
elements of Q(m) repeated N/Nm times, each time

appropriately superscripted as mentioned hefore.
All other entries in P(m) are zeroes. Regardless
of the superscripts we have :hat

ﬁ E £l |2 N fm zm 2
c Pgq (™) * S Elq (m)l (17)
i=] n=] m i=1 j=1

Using (16), (17), and the fact that th (m)|2
E fa, j\m)[ gives

N N N
2 1 N 2 ~m 2
g S By S Tk _(a-D]° 2 2 Elg, ()
NN e M kel ga1 K4
-28 N
2 2
+ 53 2 ix @ 1.

Now, if xn(m) is the nth output of the mth module
it follows from Parseval that
N N
2 v 2
Th m[“= 8 Tk (@],
nst O Moo=y "
By induction then

N ...N
2 1 w1 2
= (m) < Z Elx l ~~ o fn Em Elqkl:(m)‘

n=l m k=l f=1

+ Hl...Nm 2-28

N 12
where x, = x“(o) is the ath input to the PF FFT.

Finally, substituting this into (15) gives the
Jesired bound

KR Izrzu
n=l m=1 V

Z“‘ E“‘E]q E(m)l y+ 2 )1

Y

(21

(3]

(5]

(61

n
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